
	

Похожи ли риторические структуры 
документа и мета-документа?
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Формулируется проблема классификации текста по принадлежности 
к документу или мета-документа (паттерны метаязыка и языка-объекта), 
а также предлагаются ее области применения. Применяется метод ядер 
на расширенных деревьях разбора, полученных в резльтате склейки де-
ревьев для предложений на основе анафоры, риторических структур 
и коммуникативных действий. Мы оцениваем наш подход с помощью 
корпуса инженерных документов, а также в области литературы. Пред-
ложенный метод позволяет надежно различать тексты с паттернами 
на языке-объекте и на метазыке, опираясь в основном на соответствю-
щие риторические структуры.
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The problem of classifying text with respect to belonging to a document 
or a meta-document (metalanguage and language object patterns) is for-
mulated and its application areas are proposed. An algorithm is proposed for 
document classification tasks where counts of words is insufficient do differen-
tiate between such abstract classes of text as metalanguage and object-level. 
We extend the parse tree kernel method from the level of individual sentences 
towards the level of paragraphs, based on anaphora, rhetoric structure rela-
tions and communicative actions linking phrases in different sentences. Tree 
kernel learning is then applied to these extended trees to leverage of addi-
tional discourse-related information. We evaluate our approach in the domain 
of action-plan documents, as well as in literature domain, recognizing some 
portions of text in Kafka’s novel “The Trial” as metalanguage patterns and dif-
ferentiating them from the novel’s description in the studies of Kafka by others.
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1.	 Introduction

Solving text classification problems, keywords and their topicality usually suf-
fice. These features provide abundant information to determine a topic of a text 
or document, such as apple vs banana, or adventures vs relaxing travel. At the same 
time, there is a number of document classification domains where distinct classes 
have similar words. In this case, style, phrasings and other kinds of text structure 
information need to be leveraged. To perform text classification in such domains, one 
needs to employ discourse information such as anaphora, rhetoric structure, entity 
synonymy and ontology, if available [11].

In this study, an issue of classifying a text with respect to being metalanguage 
or language object is addressed. We are concern with differentiating between object-
level documents, which inform us on how to do things, or how something has been 
done, and meta-documents, specifying how to write a document which explains 
how to do things, or how things have been done. Metalanguage is a symbolic system 
intended to express information, or analyze another language or symbolic system. 
In proof theory, metalanguage is a language in which proofs are dealt with. Con-
versely, object-level the logic itself. In logic, it is a language in which the truth of state-
ments in another language is being discussed. Logic programs can be recognized 
as meta-programs or object-level programs easily [4]. We refer to meta-document 
as a document whose text extensively uses a metalanguage.

In a natural language document, metalanguage is used as a special expres-
sive means to ascend to the desired level of abstraction. To automatically recognize 
metalanguage patterns in text one, needs some implicit signals at the syntactic level. 
Naturally, just using keyword statistics is insufficient to differentiate between texts 
in metalanguage and language-object.

A presence of verbs for speech acts and mental states (such as knowing) may 
help to identify metalanguage patterns, but is an unreliable criterion: I know the lo-
cation of the highest mountain vs I know what he thinks about the highest mountain 
in the world. The latter sentence contains a meta-predicate think (who, about-what) 
with the second variable ranging over a set of (object-level) expressions for thoughts 
about the highest mountain. Relying on syntactic parse trees would provide us with 
specific expressions and phrasings connected with a metalanguage. However, it will 
still be insufficient for a thorough description of linguistic features inherent to a meta-
language. It is hard to identify such features without employing a discourse structure 
of a document. This discourse structure needs to include anaphora, rhetoric relations, 
and interaction scenarios by means of communicative language[7]. Furthermore, 
to systematically learn these discourse features associated with metalanguage, and 
differentiate them from the ones for language-object, one needs a unified approach 
to classify graph structures at the level of paragraphs [5, 6].

The design of such features for automated learning of syntactic and discourse 
structures for classification is still done manually today. To overcome this problem, tree 
kernel approach has been proposed [1]. Tree kernels constructed over syntactic parse 
trees, as well as discourse trees [10] is one of the solutions to conduct feature engi-
neering. Convolution tree kernel [3, 12] defines a feature space consisting of all subtree 
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types of parse trees and counts the number of common subtrees to express the respec-
tive distance in the feature space. They have found a broad range of applications in NLP 
tasks such as syntactic parsing re-ranking, relation extraction [16], named entity rec-
ognition [1], pronoun resolution [13], question classification, and machine translation.

The kernel ability to generate large feature sets is useful to assure we have enough 
linguistic features to differentiate between the classes, to quickly model new and not 
well understood linguistic phenomena in learning machines. However, it is often pos-
sible to manually design features for linear kernels that produce high accuracy and 
fast computation time whereas the complexity of tree kernels may prevent their ap-
plication in real scenarios. SVM [25] can work directly with kernels by replacing the 
dot product with a particular kernel function. This useful property of kernel methods, 
that implicitly calculates the dot product in a high-dimensional space over the original 
representations of objects such as sentences, has made kernel methods an effective 
solution to modeling structured linguistic objects.

An approach to build a kernel based on more than a single parse tree for search has 
been proposed [9,10]. To perform classification based on additional discourse features, 
we form a single tree from a tree forest for a sequence of sentences in a paragraph of text. 
Currently, kernel methods tackle individual sentences. For example, in question answering, 
when a query is a single sentence and an answer is a single sentence, these methods work 
fairly well. However, in learning settings where texts include multiple sentences, we need 
to represent structures which include paragraph-level information such as discourse.

A number of NLP tasks such as classification require computing of semantic fea-
tures over paragraphs of text containing multiple sentences. Doing it at the level of in-
dividual sentences and then summing up the score for sentences will not always work. 
In the complex classification tasks where classes are defined in an abstract way, the 
difference between them may lay at the paragraph level and not at the level of indi-
vidual sentences. In the case where classes are defined not via topics but instead via 
writing style, discourse structure signals become essential. Moreover, some informa-
tion about entities can be distributed across sentences, and classification approach 
needs to be independent of this distribution. We will demonstrate the contribution 
of paragraph-level approach vs the sentence level in our evaluation.

2.	 The domain of documents and meta-documents

Our first example of the use of meta-language is the following text shared by an up-
set customer, doing his best to have a bank to correct an error: The customer representa-
tive acknowledged that the only thing he is authorized to do is to inform me that he is not 
authorized to do anything... This is a good example for how people describe thinking 
about thinking. In this example, bank operations can be described in language-object, 
and bank employee’s authorizations to perform these operations are actually described 
in metalanguage. Here a document on banking operations is an object-level document, 
and authorization rules document is a meta-document relative to the operations docu-
ment. The claim of this work is that this classification can be performed based on text 
analysis only without any knowledge of banking industry.



Galitsky B. A.﻿﻿﻿﻿

�

We define an action-plan (object-level) document as a document which contains 
a thorough and well-structured description of how to build a particular system or work 
of art, from engineering to natural sciences to creative art. According to our defini-
tion, action-plan document follows the reproducibility criteria of a patent or research 
publication; however format might deviate significantly. One can read such document 
and being proficient in the knowledge domain, can build such a system or work of art.

Conversely, a meta-document is a document explaining how to write object-
level, action-plan documents. They include manuals, standard action-plan documents 
should adhere to, tutorials on how to improve them, and others. We need to differ-
entiate action-plan documents from the classes of documents which can be viewed 
as ones containing meta-language, whereas the genuine action-plan documents 
consists of the language-object patterns and should not include metalanguage ones. 
As to the examples of meta-documents, they include design requirements, project 
requirement document, operational requirements, design guidelines, design guides, 
tutorials, design templates (template for technical design document, research papers 
on system design, educational materials on system design, resume of a design profes-
sional, and others.

Naturally, action-plan documents are different from similar kinds of documents 
on the same topic in terms of style and phrasing. To extract these features, rhetoric 
relations are essential. Notice that meta-documents can contain object-level text, such 
as design examples. Object level documents (genuine action-plan docs) can contain 
some author reflections on the system design process (which are written in metalan-
guage). Hence the boundary between classes does not strictly separates metalanguage 
and language object. We use statistical language learning to optimize such boundary, 
having supplied it with a rich set of linguistic features up to the discourse structures. 
In the design document domain, we will differentiate between texts expressed mostly 
via meta-language and the ones mostly in language-object.

A combination of object-language and metalanguage patterns and description 
styles can also be found in literature. Describing the nature, a historical event, an en-
counter between people, an author uses a language object. Describing the thought, 
beliefs, desires and knowledge of characters about the nature, events and interactions 
between people, an author may use a metalanguage, if its entities/range over the ex-
pressions (phrases) of the language-object.

An outstanding example of the use of metalanguage in literature is Franz Kaf-
ka’s novel “The Trial”. According to our model, the whole plot is described in meta-
language, and object-level layer is not presented at all. This is unlike a typical work 
of literature, where both levels are employed and object-level prevail, such as fairy 
tales. In “The Trial” we find out that the main character Joseph is being prosecuted, 
his thoughts and feelings are described. Also, his meeting with various people related 
to the trial are presented, but they are not attached to the essence of what was hap-
pening . No information is available about a reason for the trial, the charge, and the 
circumstances of the deed (that would be a language-object level information). The 
novel is a pure example of the presence of meta-theory and absence of object-level 
theory, from the standpoint of logic. The reader is expected to form the object–level 
theory herself to avoid an ambiguity in the interpretation of this novel.
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Use of “The Trial” text as a training dataset would assist in understanding the 
linguistic properties of metalanguage and language-object. For example, it is easy 
to differentiate between a mental and a physical word, just relying on keywords. How-
ever, to distinguish meta-language from language object in text, one need to consider 
different discourse structures, which we will automatically learn from text.

In the literature domain, we will attempt to draw a boundary between the pure 
metalanguage (works of literature with a special level of abstraction) and a mixed 
level text (a typical work of literature).

3.	 Learning discourse structure via tree kernels

It turns out that sentence-level tree kernels are insufficient for classification 
in our domains. Since important phrases can be distributed through different sen-
tences, one needs a sentence boundary—independent way of extracting both syntac-
tic and discourse features. Therefore we intend to combine/merge parse trees to make 
sure we cover all the phrase of interest. Let us analyze the following text with respect 
of belonging to a document or meta-document.

This document describes the design of back end processor. Its requirements 
are enumerated below.

From the first sentence, it looks like an action-plan document. To process the 
second sentence, we need to disambiguate the preposition ‘its’. As a result, we con-
clude from the second sentence that it is a requirements document, not an object-level 
action-plan one.

The structure of a document which can be potentially valuable for classifica-
tion can be characterized by rhetoric relations that hold between the parts of a text. 
These relations, such as explanations or contrast, are important for text understanding 
in general since they contain information on how these parts of text are related to each 
other to form a coherent discourse. Naturally, we expect the structure of discourse for 
metalanguage text patterns to be different to that of language-object text patterns.

Rhetorical Structure Theory (RST, [15, 18]) is one of the most popular approaches 
to model extra-sentence as well as intra-sentence discourse. RST represents texts by la-
beled hierarchical structures, called Discourse Trees (DTs). The leaves of a DT correspond 
to contiguous Elementary Discourse Units (EDUs). Adjacent EDUs are connected by rhe-
torical relations (e.g., Elaboration, Contrast), forming larger discourse units (represented 
by internal nodes), which in turn are also subject to this relation linking. Discourse units 
linked by a rhetorical relation are further distinguished based on their relative impor-
tance in the text: nucleus being the central part, whereas satellite being the peripheral 
one. Discourse analysis in RST involves two subtasks: discourse segmentation is the task 
of identifying the EDUs, and discourse parsing is the task of linking the discourse units 
into a labeled tree. Discourse analysis explores how meanings can be built up in a commu-
nicative process, which varies between a text metalanguage and a text language-object. 
Each part of a text has a specific role in conveying the overall message of a given text.
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For our classification tasks, just an analysis of a text structure can suffice for 
proper classification. Given a positive sequence

A hardware system contains classes such as GUI for user interface, IO for 
importing and exporting data between the emulator and environment, 
and Emulator for the actual process control. Furthermore, a class Modules 
is required which contains all instances of modules in use by emulation process.

and a negative sequence

A socio-technical system is a social system sitting upon a technical base. 
Email is a simple example of such system. The term socio-technical was 
introduced in the 1950s by the Tavistok Institute.

We want to classify the paragraph

A social network-based software ticket reservation system includes the 
following components. They are the Database for storing transactions, Web 
Forms for user data input, and Business rule processor for handling the web 
forms. Additionally, the backend email processing includes the components for 
nightly transaction execution.
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One can see that it follows the rhetoric structure of the top (positive) training set 
element, although it shares more common keywords with the bottom (negative) ele-
ment. Hence we classify it as an action-plan document, being an object-level text, since 
it describes the system rather than introduces a terms (as the negative element does).

4.	 Anaphora and rhetoric relations for classification tasks

We introduce a classification problem where keyword and even phrase-based fea-
tures are insufficient. This is due to the variability of ways information can be com-
municated in multiple sentences, and variations in possible discourse structures of text 
which needs to be taken into account.

We consider an example of text classification problem, where short portions 
of text belong to two classes:

•	 Tax liability of a landlord renting office to a business.
•	 Tax liability of a business owner renting an office from landlord.

I rent an office space. This office is for my business. I can deduct office rental 
expense from my business profit to calculate net income.

To run my business, I have to rent an office. The net business profit 
is calculated as follows. Rental expense needs to be subtracted from revenue.

To store goods for my retail business I rent some space. When I calculate the 
net income, I take revenue and subtract business expenses such as office rent.

I rent out a first floor unit of my house to a travel business. I need to add the 
rental income to my profit. However, when I repair my house, I can deduct the 
repair expense from my rental income.
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I receive rental income from my office. I have to claim it as a profit in my tax 
forms. I need to add my rental income to my profits, but subtract rental 
expenses such as repair from it.

I advertised my property as a business rental. Advertisement and repair 
expenses can be subtracted from the rental income. Remaining rental income 
needs to be added to my profit and be reported as taxable profit.

Note that keyword-based analysis does not help to separate the first three para-
graph and the second three paragraphs. They all share the same keywords rental/of-
fice/income/profit/add/subtract. Phrase-based analysis does not help, since both sets 
of paragraphs share similar phrases.

Secondly, pair-wise sentence comparison does not solve the problem either. 
Anaphora resolution is helpful but insufficient. All these sentences include ‘I’ and its men-
tion, but other links between words or phrases in different sentences need to be used.

Rhetoric structures need to come into play to provide additional links between 
sentences. The structure to distinguish between renting for yourself and deducting 
from total income and renting to someone and adding to income embraces multiple sen-
tences. The second clause about adding/subtracting incomes is linked by means of the 
rhetoric relation of elaboration with the first clause for landlord/tenant. This rhetoric 
relation may link discourse units within a sentence, between consecutive sentences 
and even between first and third sentence in a paragraph. Other rhetoric relations can 
play similar role for forming essential links for text classification.

Which representations for these paragraphs of text would produce such common 
sub-structure between the structures of these paragraphs? We believe that extended 
trees, which include the first, second, and third sentence for each paragraph together 
can serve as a structure to differentiate the two above classes. The dependency parse 
trees for the first text in our set and its coreferences are shown below:
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There are multiple ways the nodes from parse trees of different sentences can 
be connected: we choose the rhetoric relation of elaboration which links the same 
entity office and helps us to form the structure rent-office-space—for-my-business—
deduct-rental-expense which is the base for our classification.

We show the resultant extended tree with the root ‘I’ from the first sentence.

It includes the whole first sentence, a verb phrase from the second sentence and 
a verb phrase from the third sentence according to rhetoric relation of elaboration. 
Notice that this extended tree can be intuitively viewed as representing the ‘main idea’ 
of this text compared to other texts in our set. All extended trees need to be formed 
for a text and then compared with that of the other texts, since we don’t know in ad-
vance which extended tree is essential. From the standpoint of tree kernel learning, 
extended trees are learned the same way as regular parse trees.

5.	 Building extended trees and learning them

For every inter-sentence arc which connects two parse trees, we derive the exten-
sion of these trees, extending branches according to the arc (Fig. 1).

In this approach, for a given parse tree, we will obtain a set of its extension, so the 
elements of kernel will be computed for many extensions, instead of just a single tree. 
The problem here is that we need to find common sub-trees for a much higher number 
of trees than the number of sentences in text, however by subsumption (sub-tree rela-
tion) the number of common sub-trees will be substantially reduced.

If we have two parse trees P1 and P2 for two sentences in a paragraph, and a rela-
tion R12: P1i → P2j between the nodes P1i and P2j, we form the pair of extended trees P1*P2:

…,P1i-2, P1i-1, P1i, P2j, P2j+1, P2j+2,…

…,P2j-2, P2j-1, P2j, P1i, P1i+1, P2i+2,…,

which would form the feature set for tree kernel learning in addition to the original 
trees P1 and P2.
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Fig. 1: An arc which connects two parse trees for two sentences in a text 
(on the top) and the derived set of extended trees (on the bottom)

The algorithm for building an extended tree for a set of parse trees T is presented 
below:

Input:
1) Set of parse trees T.
2) Set of relations R, which includes relations Rijk between the nodes of Ti and Tj: 
Ti ∈ T, Tj ∈ T, Rijk ∈ R. We use index k to range over multiple relations between the 
nodes of parse tree for a pair of sentences.

Output: the exhaustive set of extended trees E.

Set E = ∅;
For each tree i=1:|T|
  For each relation Rijk, k = 1:|R|
    Obtain Tj

    Form the pair of extended trees Ti * Tj;
    Verify that each of the extended trees do not have a super-tree in E
    If verified, add to E;
Return E.

Notice that the resultant trees are not the proper parse trees for a sentence, but 
nevertheless form an adequate feature space for tree kernel learning.

Kernel methods are a large class of learning algorithms based on inner product 
vector spaces. Support vector machines (SVMs) are mostly well-known algorithms. 
The main idea behind SVMs is to learn a hyperplane,
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𝑛𝑛1 𝑛𝑛2

 belongs to a vector space of n dimensions built on real 
numbers) and 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

 are parameters learned from training examples by applying the 
Structural Risk Minimization principle (Cortez & Vapnik 1995).

Convolution kernels as a measure of similarity between trees compute the 
common sub-trees between two trees 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

 and 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

. Convolution kernel does not have 
to compute the whole space of tree fragments. Let the set 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

 be the 
set of sub-trees of an extended parse tree, and 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

 be an indicator function which 
is equal to 1 if the subtree ti is rooted at a node n, and is equal to 0 otherwise. A tree 
kernel function over trees 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

 and 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

 is

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

where 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

 and 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

 are the sets of 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

’s and 

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

’s nodes, respectively and

𝐻𝐻(𝑥𝑥��⃗ ) = 𝑤𝑤��⃗ ∙ 𝑥𝑥��⃗ + 𝑏𝑏 = 0

𝑥⃗𝑥

𝑤𝑤��⃗ ∈ ℜ𝑛𝑛 𝑤𝑤��⃗

𝑏𝑏 ∈ ℜ

𝑇𝑇1 𝑇𝑇2 𝜏𝜏 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡|𝜏𝜏|�

𝜒𝜒𝑖𝑖(𝑛𝑛)

𝑇𝑇1 𝑇𝑇2

𝑇𝑇𝑇𝑇(𝑇𝑇1,𝑇𝑇2) = � � Δ(𝑛𝑛1,𝑛𝑛2)
𝑛𝑛1∈𝑁𝑁𝑇𝑇2𝑛𝑛1∈𝑁𝑁𝑇𝑇1

, 

𝑁𝑁𝑇𝑇1 𝑁𝑁𝑇𝑇2 𝑇𝑇1 𝑇𝑇2

Δ(𝑛𝑛1,𝑛𝑛2) = �𝜒𝜒𝑖𝑖(𝑛𝑛1)𝜒𝜒𝑖𝑖(𝑛𝑛2)
|𝜏𝜏|

𝑖𝑖=1

𝑛𝑛1 𝑛𝑛2

It calculates the number of common fragments with the roots in and nodes.

There are following processing steps used in our classifier. Each paragraph 
of a document is subject to sentence splitting, part-of-speech tagging, dependency 
parsing and chunking. We also rely on additional tags to extend SVM feature space, 
finding similarities between trees. These additional tags include noun entities from 
Stanford NLP such as organization and title, and verb types from VerbNet. We then 
produce a graph-based representation for a document, applying anaphora and our 
own RST parser for inter-sentence relations.

To obtain the inter-sentence links, we employ coreferences from Stanford NLP 
[17, 20]. Rhetoric relation extractor is based on our rule-based approach to finding 
relations between EDUs [10]. We combine manual rules with automatically learned 
rules derived from the available discourse corpus by means of syntactic generalization. 
For each inter-sentence arc between two parse trees, we form a pair of extended trees 
from the source and destination parse trees for this arc [6]. Finally, we form a training 
dataset of extended trees and pass it on to SVM Parse tree kernel learner [14].

6.	 Evaluation

For the action-plan document domain, we formed a set of 940 action-plan doc-
uments from the web. We also compiled the set of meta- documents on similar en-
gineering topics, mostly containing the same keywords. For the literature domain, 
we collected 160 paragraphs as meta-documents from Kafka’s novel “The Trial” 
as well as his other novels so that these paragraphs are read as metalanguage pat-
terns. As a set of object-level documents we manually selected 200 paragraphs of text 
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in the same domain (scholarly articles about “The Trial”). We split the data into 3 sub-
sets for training/evaluation portions and cross-validation [19].

Table 1 shows evaluation results for the both above domains. Each row shows the 
results of the baseline classification methods, such as Keyword statistics (TF*IDF, [21, 22], 
Nearest-Neighbor classification and Naïve Bayes [23, 24].

Baseline approaches show rather low performance. The one of the tree kernel 
based methods improves as the sources of linguistic properties are expanded. For 
both domains, there is an improvement by a few percent due to the rhetoric relations 
compared with the baseline tree kernel SVM which employs parse trees only. For the 
literature documents, the role of anaphora is lower than for technical ones.

Table 1: Classifying text into metalanguage and language-object

Actin-plan document, % Literature doc

Method Precision Recall F-measure Precision Recall F-measure

Nearest neighbor clas-
sifier–TF*IDF based

53.9 62.0 57.67 48.5 54.3 51.24

Naive Bayesian classi-
fier (WEKA)

55.3 59.7 57.42 50.6 51.0 50.80

Tree kernel—regular 
parse trees

71.4 76.9 74.05 63.3 68.7 65.89

Tree kernel SVM—
extended trees for 
anaphora

77.8 81.4 79.56 69.3 65.6 67.40

Tree kernel SVM—ex-
tended trees for RST

80.1 80.5 80.30 69.8 74.5 72.07

Tree kernel SVM—ex-
tended trees for both 
anaphora & RST

83.3 83.6 83.45 71.5 73.1 72.29

7.	 Related work and conclusions

We have previously studied enriching a set of linguistic information such 
as syntactic relations between words helps in search and other relevance tasks [6,8]. 
To leverage semantic discourse information and especially rhetoric relations, we in-
troduced parse thicket representation of documents and defined generalization op-
eration on parse thickets [9]. We also proposed how the feature space of tree kernel 
learning can be expanded to accommodate for semantic discourse features [10].

In this study we addressed the issue of how semantic discourse features assist 
with solving such abstract classification problem as differentiating between natu-
ral language-object and natural meta-language. We demonstrated that the problem 
of such level of abstraction can nevertheless be dealt with statistical learning allow-
ing automated feature engineering. Evaluation domains are selected so that the only 
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differences between classes are in phrasing and discourse structures (not in key-
words). We also demonstrated that both of these structures are learnable.

We draw the comparison with two following sets of linguistic features:
1)	 The baseline set, parse trees for individual sentences,
2)	 Parse trees and discourse information,
and showed that the enhanced set indeed improves the classification perfor-

mance for the same learning framework. One can see that the baseline text classifica-
tion approaches does not perform well in the classification domain as abstract and 
complicated as recognizing metalanguage.

A number of studies explored various forms of meta-language and meta-reason-
ing, however to the best of our knowledge a system which automatically recognizes 
natural metalanguage has not being built. [2] proposed a fairly general approach 
to meta-reasoning as providing a basis for selecting and justifying computational ac-
tions. Addressing the problem of resource-bounded rationality, the authors provide 
a means for analyzing and generating optimal computational strategies. Because rea-
soning about a computation without doing it necessarily involves uncertainty as to its 
outcome, the authors select probability and decision theory as their main tools.

A system needs to implement metalanguage to impress peers of being human-
like and intelligent, being capable of thinking about one’s own thinking. Traditionally 
within cognitive science and artificial intelligence, thinking or reasoning has been 
cast as a decision cycle within an action-perception loop [27]. An intelligent agent 
perceives some external world stimuli and responds to achieve its goals by select-
ing some action from its available set. The result of these actions at the ground level 
is subsequently perceived at the object level and the cycle continues. Meta-reasoning 
is the process of reasoning about this cycle. It consists of both the meta-level con-
trol of computational activities and the introspective monitoring of reasoning. In this 
study we focused on linguistic issues of texts which describe such cognitive architec-
ture. We found an inter-connection between a cognitive architecture and a discourse 
structure used to express it in text. Relying on this inter-connection, one can auto-
matically classify texts with respect to the cognitive level they describe.

In our previous studies we considered the following sources of relations between 
words in sentences: coreferences, taxonomic relations such as sub-entity, partial case, 
predicates for subject etc., rhetoric structure relations, and speech acts [7]. We dem-
onstrated that a number of NLP tasks including search relevance can be improved 
if search results are subject to confirmation by parse thicket generalization, when an-
swers occur in multiple sentences. In this study we employed coreferences and rheto-
ric relation only to identify correlation with the occurrence of metalanguage in text. 
Although phrase-level analysis allows extraction of weak correlation with metalan-
guage in text, ascend to discourse structures makes detection of metalanguage more 
reliable. In our evaluation setting, using discourse improved the classification F-mea-
sure by 5.5–8.6% depending on a classification sub-domain.

There is a strong dis-attachment between modern text learning approaches and 
text discourse theories. Usually, learning of linguistic structures in NLP tasks is lim-
ited to keyword forms and frequencies. On the other hand, most theories of semantic 
discourse are not computational in nature. In this work we attempted to achieve the 
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best of both worlds: learn complete parse tree information augmented with an adjust-
ment of discourse theory allowing computational treatment.

In this paper, we used extended parse trees instead of regular ones, leveraging 
available discourse information, for text classification. This work describes one of the 
first applications of tree kernel to industrial scale NLP tasks. The advantage of this 
approach is that the manual thorough analysis of text can be avoided for complex 
text classification tasks where the classes are as high-level as documents vs meta-
documents. The reason of the satisfactory performance of the proposed classification 
method is a robustness of statistical learning algorithms to noisy and inconsistent fea-
tures extracted from documents.

The experimental environment, extended tree learning functionality and the evalu-
ation framework is available at http://code.google.com/p/relevance-based-on-parse-trees.
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